All controllers for an LPV robust control problem

Z. Szabó, Zs Biró, J. Bokor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Citations (Scopus)

Abstract

As an extension of the robust H method, the time domain design based on linear matrix inequalities (LMI) presented in Scherer [2001] is an appealing and conceptually simple framework to obtain robust LPV controllers. This paper provides a numerical reliable method to compute and parametrize all LPV controllers that corresponds to a given multiplier matrix.

Original languageEnglish
Title of host publicationIFAC Proceedings Volumes (IFAC-PapersOnline)
Pages343-348
Number of pages6
Volume7
EditionPART 1
DOIs
Publication statusPublished - 2012
Event7th IFAC Symposium on Robust Control Design, ROCOND'12 - Aalborg, Denmark
Duration: Jun 20 2012Jun 22 2012

Other

Other7th IFAC Symposium on Robust Control Design, ROCOND'12
CountryDenmark
CityAalborg
Period6/20/126/22/12

Fingerprint

Robust control
Controllers
Linear matrix inequalities
Numerical methods

ASJC Scopus subject areas

  • Control and Systems Engineering

Cite this

Szabó, Z., Biró, Z., & Bokor, J. (2012). All controllers for an LPV robust control problem. In IFAC Proceedings Volumes (IFAC-PapersOnline) (PART 1 ed., Vol. 7, pp. 343-348) https://doi.org/10.3182/20120620-3-DK-2025.00058

All controllers for an LPV robust control problem. / Szabó, Z.; Biró, Zs; Bokor, J.

IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 7 PART 1. ed. 2012. p. 343-348.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Szabó, Z, Biró, Z & Bokor, J 2012, All controllers for an LPV robust control problem. in IFAC Proceedings Volumes (IFAC-PapersOnline). PART 1 edn, vol. 7, pp. 343-348, 7th IFAC Symposium on Robust Control Design, ROCOND'12, Aalborg, Denmark, 6/20/12. https://doi.org/10.3182/20120620-3-DK-2025.00058
Szabó Z, Biró Z, Bokor J. All controllers for an LPV robust control problem. In IFAC Proceedings Volumes (IFAC-PapersOnline). PART 1 ed. Vol. 7. 2012. p. 343-348 https://doi.org/10.3182/20120620-3-DK-2025.00058
Szabó, Z. ; Biró, Zs ; Bokor, J. / All controllers for an LPV robust control problem. IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 7 PART 1. ed. 2012. pp. 343-348
@inproceedings{a2a7daf3d98548478144241f82cb032e,
title = "All controllers for an LPV robust control problem",
abstract = "As an extension of the robust H ∞ method, the time domain design based on linear matrix inequalities (LMI) presented in Scherer [2001] is an appealing and conceptually simple framework to obtain robust LPV controllers. This paper provides a numerical reliable method to compute and parametrize all LPV controllers that corresponds to a given multiplier matrix.",
author = "Z. Szab{\'o} and Zs Bir{\'o} and J. Bokor",
year = "2012",
doi = "10.3182/20120620-3-DK-2025.00058",
language = "English",
isbn = "9783902823038",
volume = "7",
pages = "343--348",
booktitle = "IFAC Proceedings Volumes (IFAC-PapersOnline)",
edition = "PART 1",

}

TY - GEN

T1 - All controllers for an LPV robust control problem

AU - Szabó, Z.

AU - Biró, Zs

AU - Bokor, J.

PY - 2012

Y1 - 2012

N2 - As an extension of the robust H ∞ method, the time domain design based on linear matrix inequalities (LMI) presented in Scherer [2001] is an appealing and conceptually simple framework to obtain robust LPV controllers. This paper provides a numerical reliable method to compute and parametrize all LPV controllers that corresponds to a given multiplier matrix.

AB - As an extension of the robust H ∞ method, the time domain design based on linear matrix inequalities (LMI) presented in Scherer [2001] is an appealing and conceptually simple framework to obtain robust LPV controllers. This paper provides a numerical reliable method to compute and parametrize all LPV controllers that corresponds to a given multiplier matrix.

UR - http://www.scopus.com/inward/record.url?scp=84866095725&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84866095725&partnerID=8YFLogxK

U2 - 10.3182/20120620-3-DK-2025.00058

DO - 10.3182/20120620-3-DK-2025.00058

M3 - Conference contribution

AN - SCOPUS:84866095725

SN - 9783902823038

VL - 7

SP - 343

EP - 348

BT - IFAC Proceedings Volumes (IFAC-PapersOnline)

ER -