Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

B. Hopp, N. Kresz, J. Kokavecz, T. Smausz, H. Schieferdecker, A. Döring, O. Marti, Z. Bor

Research output: Contribution to journalArticle

19 Citations (Scopus)


In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96° to 30-37° and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy.

Original languageEnglish
Pages (from-to)437-443
Number of pages7
JournalApplied Surface Science
Issue number1-4
Publication statusPublished - Jan 15 2004



  • Adhesion
  • Excimer laser
  • Polytetrafluoroethylene
  • Pulsed force mode microscopy
  • Surface modification
  • Teflon

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Cite this