About the distance between random walkers on some graphs

E. Csáki, Antónia Földes, Pál Révész

Research output: Contribution to journalArticle

Abstract

We consider two or more simple symmetric walks on Zd and the 2-dimensional comb lattice, and in case of finite collision, we investigate the properties of the distance among the walkers.

Original languageEnglish
Pages (from-to)36-57
Number of pages22
JournalPeriodica Mathematica Hungarica
Volume75
Issue number1
DOIs
Publication statusPublished - Sep 1 2017

Fingerprint

Walk
Collision
Graph in graph theory

Keywords

  • Collision
  • Distance
  • Random walk
  • Strong theorems

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

About the distance between random walkers on some graphs. / Csáki, E.; Földes, Antónia; Révész, Pál.

In: Periodica Mathematica Hungarica, Vol. 75, No. 1, 01.09.2017, p. 36-57.

Research output: Contribution to journalArticle

Csáki, E. ; Földes, Antónia ; Révész, Pál. / About the distance between random walkers on some graphs. In: Periodica Mathematica Hungarica. 2017 ; Vol. 75, No. 1. pp. 36-57.
@article{7e9f5208bc104dda96b147650eac1e96,
title = "About the distance between random walkers on some graphs",
abstract = "We consider two or more simple symmetric walks on Zd and the 2-dimensional comb lattice, and in case of finite collision, we investigate the properties of the distance among the walkers.",
keywords = "Collision, Distance, Random walk, Strong theorems",
author = "E. Cs{\'a}ki and Ant{\'o}nia F{\"o}ldes and P{\'a}l R{\'e}v{\'e}sz",
year = "2017",
month = "9",
day = "1",
doi = "10.1007/s10998-017-0184-1",
language = "English",
volume = "75",
pages = "36--57",
journal = "Periodica Mathematica Hungarica",
issn = "0031-5303",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - About the distance between random walkers on some graphs

AU - Csáki, E.

AU - Földes, Antónia

AU - Révész, Pál

PY - 2017/9/1

Y1 - 2017/9/1

N2 - We consider two or more simple symmetric walks on Zd and the 2-dimensional comb lattice, and in case of finite collision, we investigate the properties of the distance among the walkers.

AB - We consider two or more simple symmetric walks on Zd and the 2-dimensional comb lattice, and in case of finite collision, we investigate the properties of the distance among the walkers.

KW - Collision

KW - Distance

KW - Random walk

KW - Strong theorems

UR - http://www.scopus.com/inward/record.url?scp=85019569671&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019569671&partnerID=8YFLogxK

U2 - 10.1007/s10998-017-0184-1

DO - 10.1007/s10998-017-0184-1

M3 - Article

AN - SCOPUS:85019569671

VL - 75

SP - 36

EP - 57

JO - Periodica Mathematica Hungarica

JF - Periodica Mathematica Hungarica

SN - 0031-5303

IS - 1

ER -