Ab initio molecular orbital analysis of dimers of cis-formic acid. Implications for condensed phases

Research output: Contribution to journalArticle

77 Citations (Scopus)

Abstract

The gas phase structure of cis-formic acid dimers is investigated by high-level correlated ab initio molecular orbital methods using large basis sets augmented with both polarization and diffuse functions (up to MP2/ D95++(d,p) level). Seven stable dimer structures were located on the potential energy hypersurface of the dimer configurational space with two H-bonding interactions. No stable dimer with only one H-bond was found. The heat of dimerization (10.7-11.3 kcal/mol) of the most stable, C2h cyclic dimer is in excellent agreement with more recent experimental measurements. Beside the dimer with two equivalent O-H⋯O=C H-bonds, there exist two local minima with significant stabilization from C-H⋯O interactions. The three weakest of the seven complexes contain exclusively C-H⋯O H-bonding interactions. The dimers can interconvert to each other by rotation, disrupting one of their H-bonds. The saddle points and the local minima are anticipated not to play important roles in the gas phase but can have dominant influence on liquid dynamics. The interaction energies of the complexes allow us to assess the relative importance and approximate energetic contributions of the individual H-bonds to the overall stability of the dimers. It is illustrated that, in addition to the inferred stabilization of two separate O-H⋯O=C H-bonds, the most stable C2h complex is stabilized by about 0.4-0.6 kcal/mol internal cooperative effect, less than in the similar acetic acid dimer. The C-H H-bonding dimers display contraction of the C-H bond lengths and positive frequency shift of the ν(C-H) stretching modes relative to the noninteracting monomer. We also show that the effect of BSSE on the intermolecular potential surface of the dimers and, in particular, on the location of the true potential minimum only negligibly influences the interaction energy, but significantly distorts the intermolecular equilibrium geometry.

Original languageEnglish
Pages (from-to)11285-11291
Number of pages7
JournalJournal of Physical Chemistry
Volume100
Issue number27
Publication statusPublished - Jul 4 1996

Fingerprint

formic acid
Formic acid
Molecular orbitals
Dimers
molecular orbitals
dimers
interactions
Stabilization
stabilization
Gases
vapor phases

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

Ab initio molecular orbital analysis of dimers of cis-formic acid. Implications for condensed phases. / Túri, L.

In: Journal of Physical Chemistry, Vol. 100, No. 27, 04.07.1996, p. 11285-11291.

Research output: Contribution to journalArticle

@article{77df47d008194a74b6beaa02398ad8bf,
title = "Ab initio molecular orbital analysis of dimers of cis-formic acid. Implications for condensed phases",
abstract = "The gas phase structure of cis-formic acid dimers is investigated by high-level correlated ab initio molecular orbital methods using large basis sets augmented with both polarization and diffuse functions (up to MP2/ D95++(d,p) level). Seven stable dimer structures were located on the potential energy hypersurface of the dimer configurational space with two H-bonding interactions. No stable dimer with only one H-bond was found. The heat of dimerization (10.7-11.3 kcal/mol) of the most stable, C2h cyclic dimer is in excellent agreement with more recent experimental measurements. Beside the dimer with two equivalent O-H⋯O=C H-bonds, there exist two local minima with significant stabilization from C-H⋯O interactions. The three weakest of the seven complexes contain exclusively C-H⋯O H-bonding interactions. The dimers can interconvert to each other by rotation, disrupting one of their H-bonds. The saddle points and the local minima are anticipated not to play important roles in the gas phase but can have dominant influence on liquid dynamics. The interaction energies of the complexes allow us to assess the relative importance and approximate energetic contributions of the individual H-bonds to the overall stability of the dimers. It is illustrated that, in addition to the inferred stabilization of two separate O-H⋯O=C H-bonds, the most stable C2h complex is stabilized by about 0.4-0.6 kcal/mol internal cooperative effect, less than in the similar acetic acid dimer. The C-H H-bonding dimers display contraction of the C-H bond lengths and positive frequency shift of the ν(C-H) stretching modes relative to the noninteracting monomer. We also show that the effect of BSSE on the intermolecular potential surface of the dimers and, in particular, on the location of the true potential minimum only negligibly influences the interaction energy, but significantly distorts the intermolecular equilibrium geometry.",
author = "L. T{\'u}ri",
year = "1996",
month = "7",
day = "4",
language = "English",
volume = "100",
pages = "11285--11291",
journal = "Journal of Physical Chemistry",
issn = "0022-3654",
publisher = "American Chemical Society",
number = "27",

}

TY - JOUR

T1 - Ab initio molecular orbital analysis of dimers of cis-formic acid. Implications for condensed phases

AU - Túri, L.

PY - 1996/7/4

Y1 - 1996/7/4

N2 - The gas phase structure of cis-formic acid dimers is investigated by high-level correlated ab initio molecular orbital methods using large basis sets augmented with both polarization and diffuse functions (up to MP2/ D95++(d,p) level). Seven stable dimer structures were located on the potential energy hypersurface of the dimer configurational space with two H-bonding interactions. No stable dimer with only one H-bond was found. The heat of dimerization (10.7-11.3 kcal/mol) of the most stable, C2h cyclic dimer is in excellent agreement with more recent experimental measurements. Beside the dimer with two equivalent O-H⋯O=C H-bonds, there exist two local minima with significant stabilization from C-H⋯O interactions. The three weakest of the seven complexes contain exclusively C-H⋯O H-bonding interactions. The dimers can interconvert to each other by rotation, disrupting one of their H-bonds. The saddle points and the local minima are anticipated not to play important roles in the gas phase but can have dominant influence on liquid dynamics. The interaction energies of the complexes allow us to assess the relative importance and approximate energetic contributions of the individual H-bonds to the overall stability of the dimers. It is illustrated that, in addition to the inferred stabilization of two separate O-H⋯O=C H-bonds, the most stable C2h complex is stabilized by about 0.4-0.6 kcal/mol internal cooperative effect, less than in the similar acetic acid dimer. The C-H H-bonding dimers display contraction of the C-H bond lengths and positive frequency shift of the ν(C-H) stretching modes relative to the noninteracting monomer. We also show that the effect of BSSE on the intermolecular potential surface of the dimers and, in particular, on the location of the true potential minimum only negligibly influences the interaction energy, but significantly distorts the intermolecular equilibrium geometry.

AB - The gas phase structure of cis-formic acid dimers is investigated by high-level correlated ab initio molecular orbital methods using large basis sets augmented with both polarization and diffuse functions (up to MP2/ D95++(d,p) level). Seven stable dimer structures were located on the potential energy hypersurface of the dimer configurational space with two H-bonding interactions. No stable dimer with only one H-bond was found. The heat of dimerization (10.7-11.3 kcal/mol) of the most stable, C2h cyclic dimer is in excellent agreement with more recent experimental measurements. Beside the dimer with two equivalent O-H⋯O=C H-bonds, there exist two local minima with significant stabilization from C-H⋯O interactions. The three weakest of the seven complexes contain exclusively C-H⋯O H-bonding interactions. The dimers can interconvert to each other by rotation, disrupting one of their H-bonds. The saddle points and the local minima are anticipated not to play important roles in the gas phase but can have dominant influence on liquid dynamics. The interaction energies of the complexes allow us to assess the relative importance and approximate energetic contributions of the individual H-bonds to the overall stability of the dimers. It is illustrated that, in addition to the inferred stabilization of two separate O-H⋯O=C H-bonds, the most stable C2h complex is stabilized by about 0.4-0.6 kcal/mol internal cooperative effect, less than in the similar acetic acid dimer. The C-H H-bonding dimers display contraction of the C-H bond lengths and positive frequency shift of the ν(C-H) stretching modes relative to the noninteracting monomer. We also show that the effect of BSSE on the intermolecular potential surface of the dimers and, in particular, on the location of the true potential minimum only negligibly influences the interaction energy, but significantly distorts the intermolecular equilibrium geometry.

UR - http://www.scopus.com/inward/record.url?scp=0000280623&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000280623&partnerID=8YFLogxK

M3 - Article

VL - 100

SP - 11285

EP - 11291

JO - Journal of Physical Chemistry

JF - Journal of Physical Chemistry

SN - 0022-3654

IS - 27

ER -