A Walsh–Fourier approach to the Circulant Hadamard conjecture

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We describe an approach to the circulant Hadamard conjecture based on Walsh–Fourier analysis. We show that the existence of a circulant Hadamard matrix of order n is equivalent to the existence of a non-trivial solution of a certain homogenous linear system of equations. Based on this system, a possible way of proving the conjecture is proposed.

Original languageEnglish
Title of host publicationSpringer Proceedings in Mathematics and Statistics
PublisherSpringer New York LLC
Pages201-208
Number of pages8
Volume133
ISBN (Print)9783319177281
DOIs
Publication statusPublished - 2015
EventWorkshop on Algebraic Design Theory and Hadamard Matrices, ADTHM 2014 - Lethbridge, Canada
Duration: Jul 8 2014Jul 11 2014

Other

OtherWorkshop on Algebraic Design Theory and Hadamard Matrices, ADTHM 2014
CountryCanada
CityLethbridge
Period7/8/147/11/14

Fingerprint

Circulant Matrix
Hadamard Matrix
Linear system of equations
Nontrivial Solution

Keywords

  • Circulant matrices
  • Hadamard matrices
  • Walsh–Fourier analysis

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Matolcsi, M. (2015). A Walsh–Fourier approach to the Circulant Hadamard conjecture. In Springer Proceedings in Mathematics and Statistics (Vol. 133, pp. 201-208). Springer New York LLC. https://doi.org/10.1007/978-3-319-17729-8_16

A Walsh–Fourier approach to the Circulant Hadamard conjecture. / Matolcsi, M.

Springer Proceedings in Mathematics and Statistics. Vol. 133 Springer New York LLC, 2015. p. 201-208.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Matolcsi, M 2015, A Walsh–Fourier approach to the Circulant Hadamard conjecture. in Springer Proceedings in Mathematics and Statistics. vol. 133, Springer New York LLC, pp. 201-208, Workshop on Algebraic Design Theory and Hadamard Matrices, ADTHM 2014, Lethbridge, Canada, 7/8/14. https://doi.org/10.1007/978-3-319-17729-8_16
Matolcsi M. A Walsh–Fourier approach to the Circulant Hadamard conjecture. In Springer Proceedings in Mathematics and Statistics. Vol. 133. Springer New York LLC. 2015. p. 201-208 https://doi.org/10.1007/978-3-319-17729-8_16
Matolcsi, M. / A Walsh–Fourier approach to the Circulant Hadamard conjecture. Springer Proceedings in Mathematics and Statistics. Vol. 133 Springer New York LLC, 2015. pp. 201-208
@inproceedings{83c699175a18499abf27ea0d6c955865,
title = "A Walsh–Fourier approach to the Circulant Hadamard conjecture",
abstract = "We describe an approach to the circulant Hadamard conjecture based on Walsh–Fourier analysis. We show that the existence of a circulant Hadamard matrix of order n is equivalent to the existence of a non-trivial solution of a certain homogenous linear system of equations. Based on this system, a possible way of proving the conjecture is proposed.",
keywords = "Circulant matrices, Hadamard matrices, Walsh–Fourier analysis",
author = "M. Matolcsi",
year = "2015",
doi = "10.1007/978-3-319-17729-8_16",
language = "English",
isbn = "9783319177281",
volume = "133",
pages = "201--208",
booktitle = "Springer Proceedings in Mathematics and Statistics",
publisher = "Springer New York LLC",

}

TY - GEN

T1 - A Walsh–Fourier approach to the Circulant Hadamard conjecture

AU - Matolcsi, M.

PY - 2015

Y1 - 2015

N2 - We describe an approach to the circulant Hadamard conjecture based on Walsh–Fourier analysis. We show that the existence of a circulant Hadamard matrix of order n is equivalent to the existence of a non-trivial solution of a certain homogenous linear system of equations. Based on this system, a possible way of proving the conjecture is proposed.

AB - We describe an approach to the circulant Hadamard conjecture based on Walsh–Fourier analysis. We show that the existence of a circulant Hadamard matrix of order n is equivalent to the existence of a non-trivial solution of a certain homogenous linear system of equations. Based on this system, a possible way of proving the conjecture is proposed.

KW - Circulant matrices

KW - Hadamard matrices

KW - Walsh–Fourier analysis

UR - http://www.scopus.com/inward/record.url?scp=84945894403&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84945894403&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-17729-8_16

DO - 10.1007/978-3-319-17729-8_16

M3 - Conference contribution

SN - 9783319177281

VL - 133

SP - 201

EP - 208

BT - Springer Proceedings in Mathematics and Statistics

PB - Springer New York LLC

ER -