A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina

Éva Kiss, P. Kós, Min Chen, I. Vass

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Photosynthetic electron transport, chromatic photoacclimation and expression of the genes encoding the D1, D2, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a D1′ isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the D1 and the abundant isoform of the D2 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a D2′ isoform whose primary structure is different from the abundant D2 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of D1 and D2 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.

Original languageEnglish
Pages (from-to)1083-1094
Number of pages12
JournalBBA - Bioenergetics
Volume1817
Issue number7
DOIs
Publication statusPublished - Jul 2012

Fingerprint

Marinas
Gene encoding
Photosystem II Protein Complex
Cyanobacteria
Protein Isoforms
Genes
Light
Electron Transport
Dibromothymoquinone
Color
Gene Expression
Acclimatization
Multigene Family
cytochrome b559
chlorophyll d
Radiation
Oxygen

Keywords

  • Acaryochloris marina
  • Adaptation
  • Cyanobacteria
  • D1, D2, and cytochrome b559 proteins
  • psbA, psbD, psbE, and psbF genes

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Cell Biology

Cite this

@article{d3dedff2c219445d9c05402d1697b2b0,
title = "A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina",
abstract = "Photosynthetic electron transport, chromatic photoacclimation and expression of the genes encoding the D1, D2, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a D1′ isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the D1 and the abundant isoform of the D2 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a D2′ isoform whose primary structure is different from the abundant D2 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of D1 and D2 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.",
keywords = "Acaryochloris marina, Adaptation, Cyanobacteria, D1, D2, and cytochrome b559 proteins, psbA, psbD, psbE, and psbF genes",
author = "{\'E}va Kiss and P. K{\'o}s and Min Chen and I. Vass",
year = "2012",
month = "7",
doi = "10.1016/j.bbabio.2012.04.010",
language = "English",
volume = "1817",
pages = "1083--1094",
journal = "Biochimica et Biophysica Acta - Bioenergetics",
issn = "0005-2728",
publisher = "Elsevier",
number = "7",

}

TY - JOUR

T1 - A unique regulation of the expression of the psbA, psbD, and psbE genes, encoding the D1, D2 and cytochrome b559 subunits of the Photosystem II complex in the chlorophyll d containing cyanobacterium Acaryochloris marina

AU - Kiss, Éva

AU - Kós, P.

AU - Chen, Min

AU - Vass, I.

PY - 2012/7

Y1 - 2012/7

N2 - Photosynthetic electron transport, chromatic photoacclimation and expression of the genes encoding the D1, D2, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a D1′ isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the D1 and the abundant isoform of the D2 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a D2′ isoform whose primary structure is different from the abundant D2 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of D1 and D2 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.

AB - Photosynthetic electron transport, chromatic photoacclimation and expression of the genes encoding the D1, D2, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a D1′ isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the D1 and the abundant isoform of the D2 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light. Under far red light the amount of Photosystem II complexes increased, and expression of the psbE2 gene encoding the alpha-subunit of cytochrome b559 was enhanced. However, the psbF and psbE1 genes encoding the beta- and another isoform of alpha-cytochrome b559, respectively remained lowly expressed under all conditions. Far red light also induced the psbD3 gene encoding a D2′ isoform whose primary structure is different from the abundant D2 isoform. psbD3 was also induced under low intensity visible light, when chromatic photoacclimation was indicated by a red-shifted absorption of chlorophyll d. Our results show that differential expression of multigene families encoding different isoforms of D1 and D2 plays an important role in the acclimation of A. marina to contrasting environmental conditions. Moreover, the disproportionate quantity of transcripts of the alpha and beta subunits of cytochrome b559 implies the existence of an alpha-alpha homodimer organization of cytochrome b559 in Photosystem II complexes.

KW - Acaryochloris marina

KW - Adaptation

KW - Cyanobacteria

KW - D1, D2, and cytochrome b559 proteins

KW - psbA, psbD, psbE, and psbF genes

UR - http://www.scopus.com/inward/record.url?scp=84861216966&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84861216966&partnerID=8YFLogxK

U2 - 10.1016/j.bbabio.2012.04.010

DO - 10.1016/j.bbabio.2012.04.010

M3 - Article

C2 - 23487854

AN - SCOPUS:84861216966

VL - 1817

SP - 1083

EP - 1094

JO - Biochimica et Biophysica Acta - Bioenergetics

JF - Biochimica et Biophysica Acta - Bioenergetics

SN - 0005-2728

IS - 7

ER -