A regularity theorem for composite functional equations

Attila Gilányi, Z. Páles

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

In this paper a regularity theorem for the functional equation f(x + y) - f(x) + ∑i=1n φi[gi (y + zi) - gi(y)] = ∑i=1n ψ[gi(y + x + zi) - gi(y + x) - gi(y + zi) + gi(y)] is proved.

Original languageEnglish
Pages (from-to)317-322
Number of pages6
JournalArchiv der Mathematik
Volume77
Issue number4
Publication statusPublished - Oct 1 2001

Fingerprint

Functional equation
Regularity
Composite
Theorem

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

A regularity theorem for composite functional equations. / Gilányi, Attila; Páles, Z.

In: Archiv der Mathematik, Vol. 77, No. 4, 01.10.2001, p. 317-322.

Research output: Contribution to journalArticle

Gilányi, Attila ; Páles, Z. / A regularity theorem for composite functional equations. In: Archiv der Mathematik. 2001 ; Vol. 77, No. 4. pp. 317-322.
@article{c7718f8ce4a04c34afccf3fe73b19460,
title = "A regularity theorem for composite functional equations",
abstract = "In this paper a regularity theorem for the functional equation f(x + y) - f(x) + ∑i=1n φi[gi (y + zi) - gi(y)] = ∑i=1n ψ[gi(y + x + zi) - gi(y + x) - gi(y + zi) + gi(y)] is proved.",
author = "Attila Gil{\'a}nyi and Z. P{\'a}les",
year = "2001",
month = "10",
day = "1",
language = "English",
volume = "77",
pages = "317--322",
journal = "Archiv der Mathematik",
issn = "0003-889X",
publisher = "Birkhauser Verlag Basel",
number = "4",

}

TY - JOUR

T1 - A regularity theorem for composite functional equations

AU - Gilányi, Attila

AU - Páles, Z.

PY - 2001/10/1

Y1 - 2001/10/1

N2 - In this paper a regularity theorem for the functional equation f(x + y) - f(x) + ∑i=1n φi[gi (y + zi) - gi(y)] = ∑i=1n ψ[gi(y + x + zi) - gi(y + x) - gi(y + zi) + gi(y)] is proved.

AB - In this paper a regularity theorem for the functional equation f(x + y) - f(x) + ∑i=1n φi[gi (y + zi) - gi(y)] = ∑i=1n ψ[gi(y + x + zi) - gi(y + x) - gi(y + zi) + gi(y)] is proved.

UR - http://www.scopus.com/inward/record.url?scp=0039246637&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039246637&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0039246637

VL - 77

SP - 317

EP - 322

JO - Archiv der Mathematik

JF - Archiv der Mathematik

SN - 0003-889X

IS - 4

ER -