A quark transport theory to describe nucleon-nucleon collisions

U. Kalmbach, T. Vetter, T. Bíró, U. Mosel

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.

Original languageEnglish
Pages (from-to)584-604
Number of pages21
JournalNuclear Physics A
Volume563
Issue number4
DOIs
Publication statusPublished - Nov 1 1993

Fingerprint

vlasov equations
transport theory
quarks
collisions
Klein-Gordon equation
bags
solitary waves
simulation

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

A quark transport theory to describe nucleon-nucleon collisions. / Kalmbach, U.; Vetter, T.; Bíró, T.; Mosel, U.

In: Nuclear Physics A, Vol. 563, No. 4, 01.11.1993, p. 584-604.

Research output: Contribution to journalArticle

Kalmbach, U. ; Vetter, T. ; Bíró, T. ; Mosel, U. / A quark transport theory to describe nucleon-nucleon collisions. In: Nuclear Physics A. 1993 ; Vol. 563, No. 4. pp. 584-604.
@article{2d08c87482944b01befed648dc644bb2,
title = "A quark transport theory to describe nucleon-nucleon collisions",
abstract = "On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.",
author = "U. Kalmbach and T. Vetter and T. B{\'i}r{\'o} and U. Mosel",
year = "1993",
month = "11",
day = "1",
doi = "10.1016/0375-9474(93)90056-4",
language = "English",
volume = "563",
pages = "584--604",
journal = "Nuclear Physics A",
issn = "0375-9474",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - A quark transport theory to describe nucleon-nucleon collisions

AU - Kalmbach, U.

AU - Vetter, T.

AU - Bíró, T.

AU - Mosel, U.

PY - 1993/11/1

Y1 - 1993/11/1

N2 - On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.

AB - On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.

UR - http://www.scopus.com/inward/record.url?scp=0000415662&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000415662&partnerID=8YFLogxK

U2 - 10.1016/0375-9474(93)90056-4

DO - 10.1016/0375-9474(93)90056-4

M3 - Article

VL - 563

SP - 584

EP - 604

JO - Nuclear Physics A

JF - Nuclear Physics A

SN - 0375-9474

IS - 4

ER -