A note on the stability of the local time of a wiener process

E. Csáki, Antónia Földes

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Let L(a, t) be the local time of a Wiener process, and put A(t) = sup a≤g(t) L(a, t) L(0, t)-1. It is shown that if g(t)=t 1 2(log t)-1(log log t)-1 and lim t→∞ A(t)=0 a.s. when p > 2 and lim sum t→∞ A(t)=0 a.s. when p = 1. A similar result is proved for random g(t) depending on the maximum of the Wiener process. These results settle a problem posed by Csörgo{combining double acute accent} and Révész [7].

Original languageEnglish
Pages (from-to)203-213
Number of pages11
JournalStochastic Processes and their Applications
Volume25
Issue numberC
DOIs
Publication statusPublished - 1987

Fingerprint

Wiener Process
Local Time
Acute
Wiener process
Local time

Keywords

  • diffusion
  • local time
  • Wiener process

ASJC Scopus subject areas

  • Statistics, Probability and Uncertainty
  • Mathematics(all)
  • Modelling and Simulation
  • Statistics and Probability

Cite this

A note on the stability of the local time of a wiener process. / Csáki, E.; Földes, Antónia.

In: Stochastic Processes and their Applications, Vol. 25, No. C, 1987, p. 203-213.

Research output: Contribution to journalArticle

@article{9c0bfff428cd4300a625d274cd50ce00,
title = "A note on the stability of the local time of a wiener process",
abstract = "Let L(a, t) be the local time of a Wiener process, and put A(t) = sup a≤g(t) L(a, t) L(0, t)-1. It is shown that if g(t)=t 1 2(log t)-1(log log t)-1 and lim t→∞ A(t)=0 a.s. when p > 2 and lim sum t→∞ A(t)=0 a.s. when p = 1. A similar result is proved for random g(t) depending on the maximum of the Wiener process. These results settle a problem posed by Cs{\"o}rgo{combining double acute accent} and R{\'e}v{\'e}sz [7].",
keywords = "diffusion, local time, Wiener process",
author = "E. Cs{\'a}ki and Ant{\'o}nia F{\"o}ldes",
year = "1987",
doi = "10.1016/0304-4149(87)90198-0",
language = "English",
volume = "25",
pages = "203--213",
journal = "Stochastic Processes and their Applications",
issn = "0304-4149",
publisher = "Elsevier",
number = "C",

}

TY - JOUR

T1 - A note on the stability of the local time of a wiener process

AU - Csáki, E.

AU - Földes, Antónia

PY - 1987

Y1 - 1987

N2 - Let L(a, t) be the local time of a Wiener process, and put A(t) = sup a≤g(t) L(a, t) L(0, t)-1. It is shown that if g(t)=t 1 2(log t)-1(log log t)-1 and lim t→∞ A(t)=0 a.s. when p > 2 and lim sum t→∞ A(t)=0 a.s. when p = 1. A similar result is proved for random g(t) depending on the maximum of the Wiener process. These results settle a problem posed by Csörgo{combining double acute accent} and Révész [7].

AB - Let L(a, t) be the local time of a Wiener process, and put A(t) = sup a≤g(t) L(a, t) L(0, t)-1. It is shown that if g(t)=t 1 2(log t)-1(log log t)-1 and lim t→∞ A(t)=0 a.s. when p > 2 and lim sum t→∞ A(t)=0 a.s. when p = 1. A similar result is proved for random g(t) depending on the maximum of the Wiener process. These results settle a problem posed by Csörgo{combining double acute accent} and Révész [7].

KW - diffusion

KW - local time

KW - Wiener process

UR - http://www.scopus.com/inward/record.url?scp=0742318696&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0742318696&partnerID=8YFLogxK

U2 - 10.1016/0304-4149(87)90198-0

DO - 10.1016/0304-4149(87)90198-0

M3 - Article

VL - 25

SP - 203

EP - 213

JO - Stochastic Processes and their Applications

JF - Stochastic Processes and their Applications

SN - 0304-4149

IS - C

ER -