A note on perfect graphs

K. Cameron, J. Edmonds, L. Lovász

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Let the lines of a complete graph be 3-colored so that no triangle gets 3 different colors. If two of these colors form perfect graphs then so does the third.

Original languageEnglish
Pages (from-to)173-175
Number of pages3
JournalPeriodica Mathematica Hungarica
Volume17
Issue number3
DOIs
Publication statusPublished - Sep 1986

Fingerprint

Perfect Graphs
Complete Graph
Triangle
Line
Color

Keywords

  • AMS (MOS) subject classifications (1980): Primary 05C75, Secondary 05C15
  • complementary graphs
  • perfect graph theorem
  • Perfect graphs

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

A note on perfect graphs. / Cameron, K.; Edmonds, J.; Lovász, L.

In: Periodica Mathematica Hungarica, Vol. 17, No. 3, 09.1986, p. 173-175.

Research output: Contribution to journalArticle

Cameron, K. ; Edmonds, J. ; Lovász, L. / A note on perfect graphs. In: Periodica Mathematica Hungarica. 1986 ; Vol. 17, No. 3. pp. 173-175.
@article{be07236f33f24109bc3e6f5a5595284c,
title = "A note on perfect graphs",
abstract = "Let the lines of a complete graph be 3-colored so that no triangle gets 3 different colors. If two of these colors form perfect graphs then so does the third.",
keywords = "AMS (MOS) subject classifications (1980): Primary 05C75, Secondary 05C15, complementary graphs, perfect graph theorem, Perfect graphs",
author = "K. Cameron and J. Edmonds and L. Lov{\'a}sz",
year = "1986",
month = "9",
doi = "10.1007/BF01848646",
language = "English",
volume = "17",
pages = "173--175",
journal = "Periodica Mathematica Hungarica",
issn = "0031-5303",
publisher = "Springer Netherlands",
number = "3",

}

TY - JOUR

T1 - A note on perfect graphs

AU - Cameron, K.

AU - Edmonds, J.

AU - Lovász, L.

PY - 1986/9

Y1 - 1986/9

N2 - Let the lines of a complete graph be 3-colored so that no triangle gets 3 different colors. If two of these colors form perfect graphs then so does the third.

AB - Let the lines of a complete graph be 3-colored so that no triangle gets 3 different colors. If two of these colors form perfect graphs then so does the third.

KW - AMS (MOS) subject classifications (1980): Primary 05C75, Secondary 05C15

KW - complementary graphs

KW - perfect graph theorem

KW - Perfect graphs

UR - http://www.scopus.com/inward/record.url?scp=0042546975&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0042546975&partnerID=8YFLogxK

U2 - 10.1007/BF01848646

DO - 10.1007/BF01848646

M3 - Article

AN - SCOPUS:0042546975

VL - 17

SP - 173

EP - 175

JO - Periodica Mathematica Hungarica

JF - Periodica Mathematica Hungarica

SN - 0031-5303

IS - 3

ER -