A macroecological perspective of trait patterns in stream communities

Jani Heino, D. Schmera, T. Erős

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Other than some classical ideas, large-scale approaches to understand variation in organismal traits (or the trait composition of an ecological community) across stream ecosystems are rather recent. Recent case studies and review papers show clear evidence for the usefulness of trait-based analyses in bioassessment, but how community traits vary along natural gradients at large scales has not yet been synthesised. Here, we attempt to fill this gap by providing a synthesis of trait patterns of stream communities from a macroecological perspective. We argue that although both natural and anthropogenic filters shape community traits, examination of poorly understood natural filters, including those acting at large scales, should receive increasing attention. Such knowledge is vital for reliably inferring anthropogenic impacts on stream communities and ecosystems. We synthesise knowledge of two large-scale spatial patterns of stream communities: among drainage basins (i.e. geographical variation) and within drainage basins (i.e. longitudinal variation). We also examine the temporal dimension of organismal traits. Our review highlights clear evidence for large-scale influences on the trait composition in stream systems. For example, despite previous contentions that organismal traits should vary negligibly across large geographical gradients, there is actually clear geographical variation across near-pristine systems. Furthermore, in accordance with theory, organismal traits in actual data sets vary along the longitudinal gradient of stream systems. We provide an overview of empirical and statistical approaches to understanding the trait composition of stream communities in macroecological studies and conclude that the methodology should be carefully considered in comparisons among studies, because contrasting results may reflect not only ecological differences but also differences in methodology (e.g. choice of species traits, trait quantification and analytical methods). We conclude that the question of how the trait composition of stream communities varies along geographical and environmental gradients is far from settled. A challenge for large-scale stream ecology is to provide a more specific view of trait variation in multiple taxonomic groups (e.g. do traits vary similarly in different organisms groups?), along major environmental gradients (e.g. is trait variation similar along the same environmental gradients in different regions?) and among different regional entities (e.g. do the traits vary, on average, among different regions?).

Original languageEnglish
Pages (from-to)1539-1555
Number of pages17
JournalFreshwater Biology
Volume58
Issue number8
DOIs
Publication statusPublished - Aug 2013

Fingerprint

environmental gradient
geographical variation
drainage basin
filter
longitudinal gradient
biological assessment
methodology
ecosystems
ecosystem
anthropogenic activities
analytical methods
analytical method
case studies
ecology
synthesis
organisms

Keywords

  • community organisation
  • fish
  • geographical gradients
  • habitat templets
  • invertebrates
  • species traits

ASJC Scopus subject areas

  • Aquatic Science

Cite this

A macroecological perspective of trait patterns in stream communities. / Heino, Jani; Schmera, D.; Erős, T.

In: Freshwater Biology, Vol. 58, No. 8, 08.2013, p. 1539-1555.

Research output: Contribution to journalArticle

@article{742f6cdfbbff48e1b93ecb567dd6a24d,
title = "A macroecological perspective of trait patterns in stream communities",
abstract = "Other than some classical ideas, large-scale approaches to understand variation in organismal traits (or the trait composition of an ecological community) across stream ecosystems are rather recent. Recent case studies and review papers show clear evidence for the usefulness of trait-based analyses in bioassessment, but how community traits vary along natural gradients at large scales has not yet been synthesised. Here, we attempt to fill this gap by providing a synthesis of trait patterns of stream communities from a macroecological perspective. We argue that although both natural and anthropogenic filters shape community traits, examination of poorly understood natural filters, including those acting at large scales, should receive increasing attention. Such knowledge is vital for reliably inferring anthropogenic impacts on stream communities and ecosystems. We synthesise knowledge of two large-scale spatial patterns of stream communities: among drainage basins (i.e. geographical variation) and within drainage basins (i.e. longitudinal variation). We also examine the temporal dimension of organismal traits. Our review highlights clear evidence for large-scale influences on the trait composition in stream systems. For example, despite previous contentions that organismal traits should vary negligibly across large geographical gradients, there is actually clear geographical variation across near-pristine systems. Furthermore, in accordance with theory, organismal traits in actual data sets vary along the longitudinal gradient of stream systems. We provide an overview of empirical and statistical approaches to understanding the trait composition of stream communities in macroecological studies and conclude that the methodology should be carefully considered in comparisons among studies, because contrasting results may reflect not only ecological differences but also differences in methodology (e.g. choice of species traits, trait quantification and analytical methods). We conclude that the question of how the trait composition of stream communities varies along geographical and environmental gradients is far from settled. A challenge for large-scale stream ecology is to provide a more specific view of trait variation in multiple taxonomic groups (e.g. do traits vary similarly in different organisms groups?), along major environmental gradients (e.g. is trait variation similar along the same environmental gradients in different regions?) and among different regional entities (e.g. do the traits vary, on average, among different regions?).",
keywords = "community organisation, fish, geographical gradients, habitat templets, invertebrates, species traits",
author = "Jani Heino and D. Schmera and T. Erős",
year = "2013",
month = "8",
doi = "10.1111/fwb.12164",
language = "English",
volume = "58",
pages = "1539--1555",
journal = "Freshwater Biology",
issn = "0046-5070",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - A macroecological perspective of trait patterns in stream communities

AU - Heino, Jani

AU - Schmera, D.

AU - Erős, T.

PY - 2013/8

Y1 - 2013/8

N2 - Other than some classical ideas, large-scale approaches to understand variation in organismal traits (or the trait composition of an ecological community) across stream ecosystems are rather recent. Recent case studies and review papers show clear evidence for the usefulness of trait-based analyses in bioassessment, but how community traits vary along natural gradients at large scales has not yet been synthesised. Here, we attempt to fill this gap by providing a synthesis of trait patterns of stream communities from a macroecological perspective. We argue that although both natural and anthropogenic filters shape community traits, examination of poorly understood natural filters, including those acting at large scales, should receive increasing attention. Such knowledge is vital for reliably inferring anthropogenic impacts on stream communities and ecosystems. We synthesise knowledge of two large-scale spatial patterns of stream communities: among drainage basins (i.e. geographical variation) and within drainage basins (i.e. longitudinal variation). We also examine the temporal dimension of organismal traits. Our review highlights clear evidence for large-scale influences on the trait composition in stream systems. For example, despite previous contentions that organismal traits should vary negligibly across large geographical gradients, there is actually clear geographical variation across near-pristine systems. Furthermore, in accordance with theory, organismal traits in actual data sets vary along the longitudinal gradient of stream systems. We provide an overview of empirical and statistical approaches to understanding the trait composition of stream communities in macroecological studies and conclude that the methodology should be carefully considered in comparisons among studies, because contrasting results may reflect not only ecological differences but also differences in methodology (e.g. choice of species traits, trait quantification and analytical methods). We conclude that the question of how the trait composition of stream communities varies along geographical and environmental gradients is far from settled. A challenge for large-scale stream ecology is to provide a more specific view of trait variation in multiple taxonomic groups (e.g. do traits vary similarly in different organisms groups?), along major environmental gradients (e.g. is trait variation similar along the same environmental gradients in different regions?) and among different regional entities (e.g. do the traits vary, on average, among different regions?).

AB - Other than some classical ideas, large-scale approaches to understand variation in organismal traits (or the trait composition of an ecological community) across stream ecosystems are rather recent. Recent case studies and review papers show clear evidence for the usefulness of trait-based analyses in bioassessment, but how community traits vary along natural gradients at large scales has not yet been synthesised. Here, we attempt to fill this gap by providing a synthesis of trait patterns of stream communities from a macroecological perspective. We argue that although both natural and anthropogenic filters shape community traits, examination of poorly understood natural filters, including those acting at large scales, should receive increasing attention. Such knowledge is vital for reliably inferring anthropogenic impacts on stream communities and ecosystems. We synthesise knowledge of two large-scale spatial patterns of stream communities: among drainage basins (i.e. geographical variation) and within drainage basins (i.e. longitudinal variation). We also examine the temporal dimension of organismal traits. Our review highlights clear evidence for large-scale influences on the trait composition in stream systems. For example, despite previous contentions that organismal traits should vary negligibly across large geographical gradients, there is actually clear geographical variation across near-pristine systems. Furthermore, in accordance with theory, organismal traits in actual data sets vary along the longitudinal gradient of stream systems. We provide an overview of empirical and statistical approaches to understanding the trait composition of stream communities in macroecological studies and conclude that the methodology should be carefully considered in comparisons among studies, because contrasting results may reflect not only ecological differences but also differences in methodology (e.g. choice of species traits, trait quantification and analytical methods). We conclude that the question of how the trait composition of stream communities varies along geographical and environmental gradients is far from settled. A challenge for large-scale stream ecology is to provide a more specific view of trait variation in multiple taxonomic groups (e.g. do traits vary similarly in different organisms groups?), along major environmental gradients (e.g. is trait variation similar along the same environmental gradients in different regions?) and among different regional entities (e.g. do the traits vary, on average, among different regions?).

KW - community organisation

KW - fish

KW - geographical gradients

KW - habitat templets

KW - invertebrates

KW - species traits

UR - http://www.scopus.com/inward/record.url?scp=84879838187&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879838187&partnerID=8YFLogxK

U2 - 10.1111/fwb.12164

DO - 10.1111/fwb.12164

M3 - Article

VL - 58

SP - 1539

EP - 1555

JO - Freshwater Biology

JF - Freshwater Biology

SN - 0046-5070

IS - 8

ER -