A global framework for the Earth

Putting geological sciences in context

Benjamin van Wyk de Vries, Paul Byrne, Audray Delcamp, Pall Einarson, Oğuz Göğüş, Marie Noëlle Guilbaud, Miruts Hagos, S. Harangi, Dougal Jerram, Liviu Matenco, Sophie Mossoux, Karoly Nemeth, Mehran Maghsoudi, Michael S. Petronis, Vladislav Rapprich, William I. Rose, Erika Vye

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We propose a global framework for the Earth system to facilitate communication between the geoscience community, the public and policy makers. Geoscience research aims to understand the history and evolution of the Earth system. This combines the non-living and living parts of the Earth, especially through interactions of the lithosphere, biosphere and atmosphere as well as the other parts of the system, such as the asthenosphere, core and extraterrestrial influences. Such research considers a system that spans scales from microscopic (micrometer scale) to megascopic (many 1000. s of km scale), and from milliseconds to millions of years. To connect different parts of this immense system, we habitually use a wide range of ad hoc geological frameworks, systems and geological environment models, where different processes and features operate and combine. In consequence, one way to judge the significance of our work, and to increase its value, is to assess how the elements studied are integrated within the whole Earth system. This allows us to see what implications any study has for this greater Earth system. To do this successfully, our research needs a standard global framework to assess a study's relevance. However, such a global framework does not formally exist, and so this article looks at existing examples and proposes one that can systematically place research into a global geological context. This proposed framework has the advantage of being useful for communicating geological processes to other disciplines, and can be used for any type of Earth (or planetary) environment. This framework is a fundamental tool for geoscience communication and for outreach, especially through geological heritage (geoheritage). Geoheritage concerns the valuing and protection of geoscience and geological sites, and is a vital tool for communicating geoscience. It can be used to communicate our knowledge of global change, providing, through landscapes and outcrops, a story that renders the concepts and advances of geoscience accessible. Like our basic research, the concept of geoheritage evolves as our understanding of the Earth progresses, and these dual changes can be explained with the global framework. Geoheritage is a global activity and it needs a global framework to put sites into context. A revision of the UNESCO geological thematic studies was called for by the World Heritage Committee in 2014 (decision: 38 COM 8B.11), and this can be done with the input from the full geoscience community using this global geological framework.Thus, for research, geoscience policy and for geoheritage, a global framework is now needed. The proposed framework can place any site in its geological environment, related to its lithospheric plate tectonic setting and its history. The framework has a solid-earth bias (lithosphere), but includes all other spheres, such as the biosphere and anthropogenic activity. Extraterrestrial influences, like solar variations and metorite impacts are included. The framework is phenomenological, due to the necessity of grouping the features that we see, but these phenomena provide evidence of processes that we cannot see. The basic format is a table, a sketch of the Earth and a system diagram, three complementary and most powerful ways of depicting a system. A timeline, or stratigraphic column can be included, to show the evolution of geological history, and the table can be used as a 'game board' where one site migrates across from one set of conditions to another over time. The global framework allows any research site, area or subject to be set in the Earth's system, in a way that gives it context, allows comparisons and provides significance. We suggest that it can be a template for an internationally accepted version used to consolidate the necessary geoscience - geoheritage link and promote outreach.

Original languageEnglish
JournalGlobal and Planetary Change
DOIs
Publication statusAccepted/In press - Jan 1 2018

Fingerprint

biosphere
lithosphere
history
communication
science
solid Earth
UNESCO
asthenosphere
plate tectonics
tectonic setting
global change
outcrop
human activity
diagram
atmosphere
need
policy
public
world
decision

Keywords

  • Geodiversity
  • Geoheritage
  • Geological environment
  • Geological system
  • Global geological framework

ASJC Scopus subject areas

  • Global and Planetary Change
  • Oceanography

Cite this

van Wyk de Vries, B., Byrne, P., Delcamp, A., Einarson, P., Göğüş, O., Guilbaud, M. N., ... Vye, E. (Accepted/In press). A global framework for the Earth: Putting geological sciences in context. Global and Planetary Change. https://doi.org/10.1016/j.gloplacha.2017.12.019

A global framework for the Earth : Putting geological sciences in context. / van Wyk de Vries, Benjamin; Byrne, Paul; Delcamp, Audray; Einarson, Pall; Göğüş, Oğuz; Guilbaud, Marie Noëlle; Hagos, Miruts; Harangi, S.; Jerram, Dougal; Matenco, Liviu; Mossoux, Sophie; Nemeth, Karoly; Maghsoudi, Mehran; Petronis, Michael S.; Rapprich, Vladislav; Rose, William I.; Vye, Erika.

In: Global and Planetary Change, 01.01.2018.

Research output: Contribution to journalArticle

van Wyk de Vries, B, Byrne, P, Delcamp, A, Einarson, P, Göğüş, O, Guilbaud, MN, Hagos, M, Harangi, S, Jerram, D, Matenco, L, Mossoux, S, Nemeth, K, Maghsoudi, M, Petronis, MS, Rapprich, V, Rose, WI & Vye, E 2018, 'A global framework for the Earth: Putting geological sciences in context', Global and Planetary Change. https://doi.org/10.1016/j.gloplacha.2017.12.019
van Wyk de Vries B, Byrne P, Delcamp A, Einarson P, Göğüş O, Guilbaud MN et al. A global framework for the Earth: Putting geological sciences in context. Global and Planetary Change. 2018 Jan 1. https://doi.org/10.1016/j.gloplacha.2017.12.019
van Wyk de Vries, Benjamin ; Byrne, Paul ; Delcamp, Audray ; Einarson, Pall ; Göğüş, Oğuz ; Guilbaud, Marie Noëlle ; Hagos, Miruts ; Harangi, S. ; Jerram, Dougal ; Matenco, Liviu ; Mossoux, Sophie ; Nemeth, Karoly ; Maghsoudi, Mehran ; Petronis, Michael S. ; Rapprich, Vladislav ; Rose, William I. ; Vye, Erika. / A global framework for the Earth : Putting geological sciences in context. In: Global and Planetary Change. 2018.
@article{6f7ffbd1035d450e97cea205a419a59a,
title = "A global framework for the Earth: Putting geological sciences in context",
abstract = "We propose a global framework for the Earth system to facilitate communication between the geoscience community, the public and policy makers. Geoscience research aims to understand the history and evolution of the Earth system. This combines the non-living and living parts of the Earth, especially through interactions of the lithosphere, biosphere and atmosphere as well as the other parts of the system, such as the asthenosphere, core and extraterrestrial influences. Such research considers a system that spans scales from microscopic (micrometer scale) to megascopic (many 1000. s of km scale), and from milliseconds to millions of years. To connect different parts of this immense system, we habitually use a wide range of ad hoc geological frameworks, systems and geological environment models, where different processes and features operate and combine. In consequence, one way to judge the significance of our work, and to increase its value, is to assess how the elements studied are integrated within the whole Earth system. This allows us to see what implications any study has for this greater Earth system. To do this successfully, our research needs a standard global framework to assess a study's relevance. However, such a global framework does not formally exist, and so this article looks at existing examples and proposes one that can systematically place research into a global geological context. This proposed framework has the advantage of being useful for communicating geological processes to other disciplines, and can be used for any type of Earth (or planetary) environment. This framework is a fundamental tool for geoscience communication and for outreach, especially through geological heritage (geoheritage). Geoheritage concerns the valuing and protection of geoscience and geological sites, and is a vital tool for communicating geoscience. It can be used to communicate our knowledge of global change, providing, through landscapes and outcrops, a story that renders the concepts and advances of geoscience accessible. Like our basic research, the concept of geoheritage evolves as our understanding of the Earth progresses, and these dual changes can be explained with the global framework. Geoheritage is a global activity and it needs a global framework to put sites into context. A revision of the UNESCO geological thematic studies was called for by the World Heritage Committee in 2014 (decision: 38 COM 8B.11), and this can be done with the input from the full geoscience community using this global geological framework.Thus, for research, geoscience policy and for geoheritage, a global framework is now needed. The proposed framework can place any site in its geological environment, related to its lithospheric plate tectonic setting and its history. The framework has a solid-earth bias (lithosphere), but includes all other spheres, such as the biosphere and anthropogenic activity. Extraterrestrial influences, like solar variations and metorite impacts are included. The framework is phenomenological, due to the necessity of grouping the features that we see, but these phenomena provide evidence of processes that we cannot see. The basic format is a table, a sketch of the Earth and a system diagram, three complementary and most powerful ways of depicting a system. A timeline, or stratigraphic column can be included, to show the evolution of geological history, and the table can be used as a 'game board' where one site migrates across from one set of conditions to another over time. The global framework allows any research site, area or subject to be set in the Earth's system, in a way that gives it context, allows comparisons and provides significance. We suggest that it can be a template for an internationally accepted version used to consolidate the necessary geoscience - geoheritage link and promote outreach.",
keywords = "Geodiversity, Geoheritage, Geological environment, Geological system, Global geological framework",
author = "{van Wyk de Vries}, Benjamin and Paul Byrne and Audray Delcamp and Pall Einarson and Oğuz G{\"o}ğ{\"u}ş and Guilbaud, {Marie No{\"e}lle} and Miruts Hagos and S. Harangi and Dougal Jerram and Liviu Matenco and Sophie Mossoux and Karoly Nemeth and Mehran Maghsoudi and Petronis, {Michael S.} and Vladislav Rapprich and Rose, {William I.} and Erika Vye",
year = "2018",
month = "1",
day = "1",
doi = "10.1016/j.gloplacha.2017.12.019",
language = "English",
journal = "Global and Planetary Change",
issn = "0921-8181",
publisher = "Elsevier",

}

TY - JOUR

T1 - A global framework for the Earth

T2 - Putting geological sciences in context

AU - van Wyk de Vries, Benjamin

AU - Byrne, Paul

AU - Delcamp, Audray

AU - Einarson, Pall

AU - Göğüş, Oğuz

AU - Guilbaud, Marie Noëlle

AU - Hagos, Miruts

AU - Harangi, S.

AU - Jerram, Dougal

AU - Matenco, Liviu

AU - Mossoux, Sophie

AU - Nemeth, Karoly

AU - Maghsoudi, Mehran

AU - Petronis, Michael S.

AU - Rapprich, Vladislav

AU - Rose, William I.

AU - Vye, Erika

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We propose a global framework for the Earth system to facilitate communication between the geoscience community, the public and policy makers. Geoscience research aims to understand the history and evolution of the Earth system. This combines the non-living and living parts of the Earth, especially through interactions of the lithosphere, biosphere and atmosphere as well as the other parts of the system, such as the asthenosphere, core and extraterrestrial influences. Such research considers a system that spans scales from microscopic (micrometer scale) to megascopic (many 1000. s of km scale), and from milliseconds to millions of years. To connect different parts of this immense system, we habitually use a wide range of ad hoc geological frameworks, systems and geological environment models, where different processes and features operate and combine. In consequence, one way to judge the significance of our work, and to increase its value, is to assess how the elements studied are integrated within the whole Earth system. This allows us to see what implications any study has for this greater Earth system. To do this successfully, our research needs a standard global framework to assess a study's relevance. However, such a global framework does not formally exist, and so this article looks at existing examples and proposes one that can systematically place research into a global geological context. This proposed framework has the advantage of being useful for communicating geological processes to other disciplines, and can be used for any type of Earth (or planetary) environment. This framework is a fundamental tool for geoscience communication and for outreach, especially through geological heritage (geoheritage). Geoheritage concerns the valuing and protection of geoscience and geological sites, and is a vital tool for communicating geoscience. It can be used to communicate our knowledge of global change, providing, through landscapes and outcrops, a story that renders the concepts and advances of geoscience accessible. Like our basic research, the concept of geoheritage evolves as our understanding of the Earth progresses, and these dual changes can be explained with the global framework. Geoheritage is a global activity and it needs a global framework to put sites into context. A revision of the UNESCO geological thematic studies was called for by the World Heritage Committee in 2014 (decision: 38 COM 8B.11), and this can be done with the input from the full geoscience community using this global geological framework.Thus, for research, geoscience policy and for geoheritage, a global framework is now needed. The proposed framework can place any site in its geological environment, related to its lithospheric plate tectonic setting and its history. The framework has a solid-earth bias (lithosphere), but includes all other spheres, such as the biosphere and anthropogenic activity. Extraterrestrial influences, like solar variations and metorite impacts are included. The framework is phenomenological, due to the necessity of grouping the features that we see, but these phenomena provide evidence of processes that we cannot see. The basic format is a table, a sketch of the Earth and a system diagram, three complementary and most powerful ways of depicting a system. A timeline, or stratigraphic column can be included, to show the evolution of geological history, and the table can be used as a 'game board' where one site migrates across from one set of conditions to another over time. The global framework allows any research site, area or subject to be set in the Earth's system, in a way that gives it context, allows comparisons and provides significance. We suggest that it can be a template for an internationally accepted version used to consolidate the necessary geoscience - geoheritage link and promote outreach.

AB - We propose a global framework for the Earth system to facilitate communication between the geoscience community, the public and policy makers. Geoscience research aims to understand the history and evolution of the Earth system. This combines the non-living and living parts of the Earth, especially through interactions of the lithosphere, biosphere and atmosphere as well as the other parts of the system, such as the asthenosphere, core and extraterrestrial influences. Such research considers a system that spans scales from microscopic (micrometer scale) to megascopic (many 1000. s of km scale), and from milliseconds to millions of years. To connect different parts of this immense system, we habitually use a wide range of ad hoc geological frameworks, systems and geological environment models, where different processes and features operate and combine. In consequence, one way to judge the significance of our work, and to increase its value, is to assess how the elements studied are integrated within the whole Earth system. This allows us to see what implications any study has for this greater Earth system. To do this successfully, our research needs a standard global framework to assess a study's relevance. However, such a global framework does not formally exist, and so this article looks at existing examples and proposes one that can systematically place research into a global geological context. This proposed framework has the advantage of being useful for communicating geological processes to other disciplines, and can be used for any type of Earth (or planetary) environment. This framework is a fundamental tool for geoscience communication and for outreach, especially through geological heritage (geoheritage). Geoheritage concerns the valuing and protection of geoscience and geological sites, and is a vital tool for communicating geoscience. It can be used to communicate our knowledge of global change, providing, through landscapes and outcrops, a story that renders the concepts and advances of geoscience accessible. Like our basic research, the concept of geoheritage evolves as our understanding of the Earth progresses, and these dual changes can be explained with the global framework. Geoheritage is a global activity and it needs a global framework to put sites into context. A revision of the UNESCO geological thematic studies was called for by the World Heritage Committee in 2014 (decision: 38 COM 8B.11), and this can be done with the input from the full geoscience community using this global geological framework.Thus, for research, geoscience policy and for geoheritage, a global framework is now needed. The proposed framework can place any site in its geological environment, related to its lithospheric plate tectonic setting and its history. The framework has a solid-earth bias (lithosphere), but includes all other spheres, such as the biosphere and anthropogenic activity. Extraterrestrial influences, like solar variations and metorite impacts are included. The framework is phenomenological, due to the necessity of grouping the features that we see, but these phenomena provide evidence of processes that we cannot see. The basic format is a table, a sketch of the Earth and a system diagram, three complementary and most powerful ways of depicting a system. A timeline, or stratigraphic column can be included, to show the evolution of geological history, and the table can be used as a 'game board' where one site migrates across from one set of conditions to another over time. The global framework allows any research site, area or subject to be set in the Earth's system, in a way that gives it context, allows comparisons and provides significance. We suggest that it can be a template for an internationally accepted version used to consolidate the necessary geoscience - geoheritage link and promote outreach.

KW - Geodiversity

KW - Geoheritage

KW - Geological environment

KW - Geological system

KW - Global geological framework

UR - http://www.scopus.com/inward/record.url?scp=85040011322&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85040011322&partnerID=8YFLogxK

U2 - 10.1016/j.gloplacha.2017.12.019

DO - 10.1016/j.gloplacha.2017.12.019

M3 - Article

JO - Global and Planetary Change

JF - Global and Planetary Change

SN - 0921-8181

ER -