A general-order local coupled-cluster method based on the cluster-in-molecule approach

Research output: Contribution to journalArticle

122 Citations (Scopus)

Abstract

A general-order local coupled-cluster (CC) method is presented which has the potential to provide accurate correlation energies for extended systems. Our method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)10.1063/1.3218842 with the frozen natural orbital (NO) techniques widely used for the cost reduction of correlation methods. The occupied molecular orbitals (MOs) are localized, and for each occupied MO a local subspace of occupied and virtual orbitals is constructed using approximate Mller-Plesset NOs. The CC equations are solved and the correlation energies are calculated in the local subspace for each occupied MO, while the total correlation energy is evaluated as the sum of the individual contributions. The size of the local subspaces and the accuracy of the results can be controlled by varying only one parameter, the threshold for the occupation number of NOs which are included in the subspaces. Though our local CC method in its present form scales as the fifth power of the system size, our benchmark calculations show that it is still competitive for the CC singles and doubles (CCSD) and the CCSD with perturbative triples [CCSD(T) approaches. For higher order CC methods, the reduction in computation time is more pronounced, and the new method enables calculations for considerably bigger molecules than before with a reasonable loss in accuracy. We also demonstrate that the independent calculation of the correlation contributions allows for a higher order description of the chemically more important segments of the molecule and a lower level treatment of the rest delivering further significant savings in computer time.

Original languageEnglish
Article number104111
JournalThe Journal of Chemical Physics
Volume135
Issue number10
DOIs
Publication statusPublished - Sep 14 2011

Fingerprint

Molecular orbitals
Molecules
molecules
molecular orbitals
Correlation methods
Cost reduction
orbitals
cost reduction
occupation
energy
thresholds

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

A general-order local coupled-cluster method based on the cluster-in-molecule approach. / Rolik, Z.; Kállay, M.

In: The Journal of Chemical Physics, Vol. 135, No. 10, 104111, 14.09.2011.

Research output: Contribution to journalArticle

@article{91c489d6c6de487b8b806d0b437e63a7,
title = "A general-order local coupled-cluster method based on the cluster-in-molecule approach",
abstract = "A general-order local coupled-cluster (CC) method is presented which has the potential to provide accurate correlation energies for extended systems. Our method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)10.1063/1.3218842 with the frozen natural orbital (NO) techniques widely used for the cost reduction of correlation methods. The occupied molecular orbitals (MOs) are localized, and for each occupied MO a local subspace of occupied and virtual orbitals is constructed using approximate Mller-Plesset NOs. The CC equations are solved and the correlation energies are calculated in the local subspace for each occupied MO, while the total correlation energy is evaluated as the sum of the individual contributions. The size of the local subspaces and the accuracy of the results can be controlled by varying only one parameter, the threshold for the occupation number of NOs which are included in the subspaces. Though our local CC method in its present form scales as the fifth power of the system size, our benchmark calculations show that it is still competitive for the CC singles and doubles (CCSD) and the CCSD with perturbative triples [CCSD(T) approaches. For higher order CC methods, the reduction in computation time is more pronounced, and the new method enables calculations for considerably bigger molecules than before with a reasonable loss in accuracy. We also demonstrate that the independent calculation of the correlation contributions allows for a higher order description of the chemically more important segments of the molecule and a lower level treatment of the rest delivering further significant savings in computer time.",
author = "Z. Rolik and M. K{\'a}llay",
year = "2011",
month = "9",
day = "14",
doi = "10.1063/1.3632085",
language = "English",
volume = "135",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "10",

}

TY - JOUR

T1 - A general-order local coupled-cluster method based on the cluster-in-molecule approach

AU - Rolik, Z.

AU - Kállay, M.

PY - 2011/9/14

Y1 - 2011/9/14

N2 - A general-order local coupled-cluster (CC) method is presented which has the potential to provide accurate correlation energies for extended systems. Our method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)10.1063/1.3218842 with the frozen natural orbital (NO) techniques widely used for the cost reduction of correlation methods. The occupied molecular orbitals (MOs) are localized, and for each occupied MO a local subspace of occupied and virtual orbitals is constructed using approximate Mller-Plesset NOs. The CC equations are solved and the correlation energies are calculated in the local subspace for each occupied MO, while the total correlation energy is evaluated as the sum of the individual contributions. The size of the local subspaces and the accuracy of the results can be controlled by varying only one parameter, the threshold for the occupation number of NOs which are included in the subspaces. Though our local CC method in its present form scales as the fifth power of the system size, our benchmark calculations show that it is still competitive for the CC singles and doubles (CCSD) and the CCSD with perturbative triples [CCSD(T) approaches. For higher order CC methods, the reduction in computation time is more pronounced, and the new method enables calculations for considerably bigger molecules than before with a reasonable loss in accuracy. We also demonstrate that the independent calculation of the correlation contributions allows for a higher order description of the chemically more important segments of the molecule and a lower level treatment of the rest delivering further significant savings in computer time.

AB - A general-order local coupled-cluster (CC) method is presented which has the potential to provide accurate correlation energies for extended systems. Our method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)10.1063/1.3218842 with the frozen natural orbital (NO) techniques widely used for the cost reduction of correlation methods. The occupied molecular orbitals (MOs) are localized, and for each occupied MO a local subspace of occupied and virtual orbitals is constructed using approximate Mller-Plesset NOs. The CC equations are solved and the correlation energies are calculated in the local subspace for each occupied MO, while the total correlation energy is evaluated as the sum of the individual contributions. The size of the local subspaces and the accuracy of the results can be controlled by varying only one parameter, the threshold for the occupation number of NOs which are included in the subspaces. Though our local CC method in its present form scales as the fifth power of the system size, our benchmark calculations show that it is still competitive for the CC singles and doubles (CCSD) and the CCSD with perturbative triples [CCSD(T) approaches. For higher order CC methods, the reduction in computation time is more pronounced, and the new method enables calculations for considerably bigger molecules than before with a reasonable loss in accuracy. We also demonstrate that the independent calculation of the correlation contributions allows for a higher order description of the chemically more important segments of the molecule and a lower level treatment of the rest delivering further significant savings in computer time.

UR - http://www.scopus.com/inward/record.url?scp=80052921845&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052921845&partnerID=8YFLogxK

U2 - 10.1063/1.3632085

DO - 10.1063/1.3632085

M3 - Article

C2 - 21932880

AN - SCOPUS:80052921845

VL - 135

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 10

M1 - 104111

ER -