A dynamical analysis of energy level fluctuations for an excess electron in methanol

Alexander Mosyak, Peter J. Rossky, László Turi

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

The dynamics of energy level fluctuations for the equilibrium solvated electron in methanol are evaluated via adiabatic ground state quantum molecular dynamics simulations. The dynamics are analyzed in terms of apparent normal mode spectral densities and contributions from such mechanical elements as solvent librational and translational motions. It is found that fluctuations of the individual energy levels have substantial contributions from translational, librational and vibrational modes. However, the energy gap is completely dominated by the low frequency translational modes of the solvent. This is in contrast to the electron in water, where a significant component arises also from librational motion.

Original languageEnglish
Pages (from-to)239-244
Number of pages6
JournalChemical Physics Letters
Volume282
Issue number3-4
DOIs
Publication statusPublished - Jan 16 1998

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'A dynamical analysis of energy level fluctuations for an excess electron in methanol'. Together they form a unique fingerprint.

  • Cite this